Synergistic Activity of Belantamab Mafodotin (anti-BCMA immuno-conjugate) with Nirogacestat (PF-03084014, gamma-secretase inhibitor) in BCMA-Expressing Cancer Cell Lines

Poster No. 4401

Stephen Eastman,1*, Christina Blackwell,2*, Julie Krueger,1 Paul M Bojczuk,3*, Christopher Shelton,1 James Smothers,1, Ira Gupta,1 and Axel Hoos1

Abstract

Multiple myeloma (MM) is a plasma cell malignancy characterized by clonal proliferation of plasma cells within the bone marrow. B-cell maturation antigen (BCMA) is a cell-surface receptor required for the survival of plasma cells and is also ubiquitously expressed on MM cells. Belantamab mafodotin (GSK2857916) is a humanized monoclonal anti-BCMA antibody, which is alucoxyslated and conjugated to the microtubule-disrupting agent monomethyl auristatin-F (MMAF). Upon binding to BCMA on the cell surface, belantamab mafodotin is rapidly internalized and the cytotoxic moiety (cytotoxic MMAF) is released, leading to direct cell death.

Belantamab mafodotin is directly shed from the plasma membrane by gamma-secretase, a type-I sheddase. To further enhance belantamab mafodotin activity, we sought to increase cell surface levels of BCMA by blocking shedding of BCMA with a gamma-secretase inhibitor (GSI). We then determined the effect on the activity of belantamab mafodotin by combining Belantamab mafodotin with nirogacestat (PF-03084014), a highly-selective GSI. In order to understand combination effects against immuno-conjugate activity, a 3-day proliferation assay on a panel of multiple myeloma and lymphoma cell lines with varying levels of BCMA expression was conducted. The assay showed a 50 to 3,000-fold EC50 shift in cell lines sensitive to belantamab mafodotin across multiple lymphoma cell types.

Antibody-dependent cellular cytotoxicity (ADCC) activity of Belantamab mafodotin in combination with nirogacestat was also examined. In a 24-hour ADCC Jurkat reporter assay, an EC50 shift across multiple BCMA-expressing cell lines was observed. Even cell lines with very low BCMA expression, such as Raji, showed a synergistic increase in ADCC activity in combination with nirogacestat. Cell lines that were non-responsive in the cell proliferation assay, showed activity in the ADCC assay, indicating low-expressing BCMA cell lines remain sensitive to belantamab mafodotin, alone and in combination with nirogacestat.

Synergistic effect from this preclinical work provided rationale to support clinical evaluation of belantamab mafodotin in combination with nirogacestat in a planned clinical trial (DREAMM-5).

Results

Belantamab mafodotin

Immuno-conjugate activity

ADCC activity

Gamma-secretase inhibition

Belantamab mafodotin uses both immuno-conjugate activity and ADCC activity against BCMA-expressing cancer cells. The use of the gamma-secretase inhibitor, nirogacestat, increases cell surface levels of BCMA and increases BCMA-targeted engagement of belantamab mafodotin.

Effects of gamma-secretase inhibitor Nirogacestat on BCMA

ADCC activity

ADCC activity was measured using Promega’s Jurkat ADCC assay. The 24-hour assay was conducted using fixed doses of nirogacestat with serial dilutions of belantamab mafodotin. Combination results show a dose-dependent increase in EC50 in clinically relevant doses.

Figure 3.

Immunocjugate activity across a panel of BCMA-expressing cell lines shows increased activity upon combination treatment with nirogacestat. Low BCMA-expressing cell lines are insensitive to combination treatment.

Conclusions

Treatment of BCMA-expressing cancer cell lines with Nirogacestat shows increased levels of BCMA cell surface expression and corresponding decreased levels of soluble BCMA

Combination therapy of belantamab mafodotin with nirogacestat results in synergistic immuno-conjugate activity. We have identified up to 3,000-fold increase in sensitivity to Belantamab mafodotin

In a 24-hour assay to measure ADCC activity, we showed increased sensitivity to belantamab mafodotin when combined with nirogacestat.

Cell lines sensitive to belantamab mafodotin as a single agent showed increased immuno-conjugate and ADCC activity, regardless of lymphoma type.

A clinical trial evaluating belantamab mafodotin with nirogacestat will be examined in DREAMM-5 platform trial (Study 2001887; NCT04130300).

References


Disclosures

Drug linker technology licensed from Seattle Genetics; monoclonal antibody produced using POTENTIUM Technology licensed from BioWa.

SE, CS, IG, JP, CB, JW, and AH are employees of GS and share stockholders in GS.